3.986 \(\int \frac{(a+b \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=156 \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) (a B+A b+3 b C)}{3 d}+\frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) (3 a A+5 a C+5 b B)}{5 d}+\frac{2 (a B+A b) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

[Out]

(2*(3*a*A + 5*b*B + 5*a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(A*b +
a*B + 3*b*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*A*Sin[c + d*x])/(5*
d*Sec[c + d*x]^(3/2)) + (2*(A*b + a*B)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.226559, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 41, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.146, Rules used = {4074, 4047, 3771, 2639, 4045, 2641} \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) (a B+A b+3 b C)}{3 d}+\frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) (3 a A+5 a C+5 b B)}{5 d}+\frac{2 (a B+A b) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(5/2),x]

[Out]

(2*(3*a*A + 5*b*B + 5*a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(A*b +
a*B + 3*b*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*A*Sin[c + d*x])/(5*
d*Sec[c + d*x]^(3/2)) + (2*(A*b + a*B)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 4074

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x]
 + Dist[1/(d*n), Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}-\frac{2}{5} \int \frac{-\frac{5}{2} (A b+a B)-\frac{1}{2} (3 a A+5 b B+5 a C) \sec (c+d x)-\frac{5}{2} b C \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}-\frac{2}{5} \int \frac{-\frac{5}{2} (A b+a B)-\frac{5}{2} b C \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx-\frac{1}{5} (-3 a A-5 b B-5 a C) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (A b+a B) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{1}{3} (-A b-a B-3 b C) \int \sqrt{\sec (c+d x)} \, dx-\frac{1}{5} \left ((-3 a A-5 b B-5 a C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 (3 a A+5 b B+5 a C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (A b+a B) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{1}{3} \left ((-A b-a B-3 b C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 (3 a A+5 b B+5 a C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 (A b+a B+3 b C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (A b+a B) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 2.66076, size = 194, normalized size = 1.24 \[ \frac{e^{-i d x} \sqrt{\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (-4 i e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right ) (3 a A+5 a C+5 b B)+20 \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) (a B+A b+3 b C)+2 \cos (c+d x) (10 (a B+A b) \sin (c+d x)+6 i (3 a A+5 a C+5 b B)+3 a A \sin (2 (c+d x)))\right )}{30 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*(20*(A*b + a*B + 3*b*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2,
2] - (4*I)*(3*a*A + 5*b*B + 5*a*C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7
/4, -E^((2*I)*(c + d*x))] + 2*Cos[c + d*x]*((6*I)*(3*a*A + 5*b*B + 5*a*C) + 10*(A*b + a*B)*Sin[c + d*x] + 3*a*
A*Sin[2*(c + d*x)])))/(30*d*E^(I*d*x))

________________________________________________________________________________________

Maple [B]  time = 2.278, size = 465, normalized size = 3. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2),x)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*A*a*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+(24*A*a+20*A*b+20*B*a)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-6*A*a-10*A*b-10*B*a)*sin(1/2*d*x+1/2*c)^2*co
s(1/2*d*x+1/2*c)+5*A*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))-9*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^
(1/2))*a+5*B*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))-15*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*
b+15*C*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1
5*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C b \sec \left (d x + c\right )^{3} +{\left (C a + B b\right )} \sec \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \sec \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac{5}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((C*b*sec(d*x + c)^3 + (C*a + B*b)*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))/sec(d*x + c)^(5/2)
, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \sec{\left (c + d x \right )}\right ) \left (A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sec ^{\frac{5}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(5/2),x)

[Out]

Integral((a + b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sec(c + d*x)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sec(d*x + c)^(5/2), x)